If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-14m=9
We move all terms to the left:
m^2-14m-(9)=0
a = 1; b = -14; c = -9;
Δ = b2-4ac
Δ = -142-4·1·(-9)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{58}}{2*1}=\frac{14-2\sqrt{58}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{58}}{2*1}=\frac{14+2\sqrt{58}}{2} $
| 13/17=7x | | 5(3w+6)=90 | | 2b−9=5b+6 | | p2=−5p | | 7(k-2)=42 | | X^2*14x+49=0 | | 20w3+13w2+2w=0 | | x-4.8.12.20.x.52=0 | | 4=2x18 | | -6(-3w+4)-2w=6(w-5)-9 | | 5(x+7)+9(2x+23)=3(x+6)–8x | | 8-8m-4m=8 | | 13x=1x+2 | | -8x+x^2+3=5 | | 7a-9=21 | | x=2-x=8 | | 5x^2+2=82 | | 9x²+4=0 | | -(x-6)-2x+3=3 | | 2(x+6)+3x=-6-x | | 0,00039=3,9⋅10x | | 4x2-8x=50 | | -5(x-2)-2x=17 | | -2(x+4)+2=x | | (7x-8)=6x+17) | | x^2+5.75x+2.5=0 | | x²+5x-28=0 | | 5(7a+3)/12=5(a-7)/6 | | P(x)=7x-10 | | 10x+x=52 | | A+4n=20 | | 3m^2-16m+64=0 |